Dermal xenobiotic metabolism: A comparison between human native skin, four in vitro test systems, and a liver system

K. Reisinger¹, H.F. Merk², C. Wiegand,¹

¹ Henkel AG & Co. KGaA, Düsseldorf, Germany; ² Department of Dermatology, University Hospital, RWTH Aachen, Aachen, Germany Kerstin.Reisinger@henkel.com

Introduction

The dermal xenobiotic metabolism contributes to potential toxicity of substances by converting penetrated compounds into harmless or toxic metabolites. Consequently, growing efforts are put into species and organ-specific safety assessment of dermal applied compounds: corrosion, irritation, genotoxicity, and sensitization. However, in contrast to the liver less is known about xenobiotic metabolism of skin and appropriate in vitro systems.

To select an in vitro system which is most similar to the in vivo situation the following dermal test system prepared from • cells from the same biopsies were compared regarding gene expression and enzyme activity:

- Human native skin
- Phenion[®] Full-Thickness Skin Model (Phenion[®] FT)
- Open Source Reconstructed Epidermis (OS-REp)
- · Monolayer cultures of fibroblasts or keratinocytes.

HepG2 cells grown in monolayer or as spheroids were selected as a liver test system. Gene expression and activity of representative enzymes related to the xenobiotic metabolism were compared between the dermal and the liver cells grown in 3D test systems.

Results

Gene expression of 4 dermal test systems from the same donor

	Native human skin		Phenion ^e FT		OS-REp Monolaye		olayer
	Dermis	Epidermis	Dermis	Epidermis	(Epidermal model)	Fibroblasts	NHEK
CYP1A1	+/-/+	++/-/++	-/-/-	-/-/-	++/++/++	+/+/+	+/+/+
CYP1B1	++/+++/+++	++/++/++	++/++/++	+/+/+	+++/+++/++	++/++/++	++/++/+
CYP2A6	-/-/+	-/-/++	-/+/+	-/+/-	+/+/+	-/-/+	-/-/-
CYP2B6	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-
CYP2D6	-/-/-	-/-/-	-/-/-	-/+/-	+/+/+	-/-/-	-/+/+
CYP2E1	++/++/++	++/+++/+++	+/+/+	+/++/+	++/++/++	+/+/+	+/+/+
CYP2S1	++/++/++	++/+++/+++	+/+/+	++/+/++	+++/++/++	+/+/+	++/+/++
CYP3A4	-/+/-	++/++/++	-/-/+	-/+/-	++/+/+	-/-/-	-/-/-
FMO1	++/++/++	++/+++/+++	++/++/++	+/+/+	++/++/++	+/-/+	-/-/-
FMO3	+/++/++	-/-/-	+/+/+	-/-/-	-/-/-	+/+/+	-/-/-
FMO5	++/++/++	+++/+++/+++	+/+/+	++/+/+	+++/+++/++	+/+/+	+/+/+
NAT1	++/++/++	++/++/+++	+/+/+	++/+/+	+++/++/++	+/+/+	+/++/++
UGT1A10	++/+++/++	+++/+++/+++	++/+/+	++/++/++	+++/+++/+++	-/-/-	++/++/++
GSTp1	+/++/++	++/+++/+++	++/++/++	+++/++/+++	+++/++/+++	++/++/++	++/++/++

Basal gene expression of different test systems obtained from the same donor (three donors in total). 2µg of total extracted RNA were transcribed to CDNA with Omniscript^{R-RT} Kit (Giagen). 1µl cDNA was amplified using the TaqMan gene expression assays (Applied Biosystems). Data of Real time-RT PCR are displayed as: - (not detected) + (Ac₁C₁ b) and (C₁ c) = 10, +++(A₁C₁ = 510), +++(A₁C₁ =

Enzyme activity of 4 dermal test systems from the same donor

Induction of CYP1 activity in different test systems obtained from the same donor (three donors in total). Cells and 3D models were treated by 25μM β-naphthoflavone for 24h-72h. The ethoxyresorufin-O-deethylase (EROD) activity was measured in living cells. Cultures were incubated with 1µM substrate and 10µM dicumarol in medium. Resoru fluorescence was measured at 535nm excitation and 590nm emission Resorufin

UGT-activity was determined as described by Gomez-Lechon et al. (1997). 100µM 4-methylumbelliferone was incubated with cultures for 1 hour in the medium. Culture medium samples were diluted 1:20 in 10mM NaOH and the remaining 4-methylumbelliferone was quantified fluorometrically at 376nm excitation and 460nm emission.

Conclusion

Decreased complexity of dermal test systems leads to reduced basal gene expression and enzyme activity

Native skin > Phenion[®] FT/OS-REp > > Monolayers

- Distinct basal gene expression and enzyme activity in dermis and epidermis of human native skin and Phenion® FT
- HepG2 grown in 3D spheroid culture express higher concentrations of liver-specific markers compared to monolayer culture
- A 3D liver test system shows prominent expression of phase I enzymes whereas a dermal 3D system display a clearly higher basal gene expression and activity of selected phase II enzymes

non et al.; Isolation, Culture and Use of Human Hepatocytes in Drug Research in in vitro Methods in Pha

Dermal test systems

Human Native Skin: The biopsies (foreskins) were taken from young male patients. The explants were used within three hours after surgery.

Phenion[®] Full Thickness Skin Model

The skin equivalents consisted of a collagen matrix and fibroblasts and keratinocytes isolated from human foreskin tissue. After 3 weeks of cultivation under submersed conditions the skin models were cultivated at the air-liquid interface (ALI) for another 2 weeks [Mewes et al., 2007].

Open Source - Reconstructed Epidermis (OS-REp): Human foreskin keratinocytes were cultivated according to the protocol published by Poumay *et al.*, 2004

Keratinocyte and fibroblast monolayer:

Human fibroblasts and keratinocytes were isolated from foreskin tissues by first separating dermis and epidermis by thermolysin treatment overnight. The epidermal tissue was then incubated in a trypsin epidermal issue was men incubated in a trypsin solution until it was completely dissociated into single cells which were cultivated in EpiLife medium (Cascade). The connective tissue was dissociated by incubation in a collagenase solution. Fibroblats were cultivated in DMEM supplemented with FCS.

Liver test system

G2 monolayer:

HepG2 were maintained in DMEM supplemented with Glutamax and 10% FCS. They were seeded in monolayer cultures at 2000 cells in standard 96-well plates.

HepG2 spheroids

After tripsinizing HepG2 monolayer the cells were suspended in 10ml methyl cellulose containing medium (20% methyl cellulose stock solution and 80% phenolred-free DMEM, Korff solution and 80% phenolred-free DMEM, Korff et al., 2004) and were seeded in 100µi methyl cellulose and phenolred-free DMEM (Glutamax with 10% fetal calf serum) at 200 and 400 cells per vell in a 96-well non-adhesive round bottom tissue culture plate. Supernatant was subjected to commercially available Urea Assay Ktt (Biochain) or Albumin ELISA Kti (Assay Pro) to determine the release of liver specific markers into the medium.

Comparison of Skin and Liver test systems

	Gene expression	CYP1A1	GSTp1	UGT1A10	
ſ	Skin model	-/+	++	++	
	Liver model	++	-	++	
	Enzyme activity	EROD [dRFU/min/µgProt.]	GST [nmol/min/mg protein]	UGT [µM 4-MU/mg prot.]	
ſ	Skin model	5	75	160	
	Liver model	50	30	15	